430. A Normal Co-ordinate Analysis of MeCN,BX,, *and its Relevance to the Thermodynamic Stability of Co-ordination Compounds.*

By I. R. BEATTIE and T. GILSON.

A normal co-ordinate analysis of $MeCN, BX_a$ for general angles has been carried out, and the G-matrix elements are tabulated. This analysis is used to calculate " C-N and B-N stretching frequencies " for a variety of force constants with $X = F$, Cl, or Br. The "C-N stretching frequency" is remarkably insensitive to variations of the mass of X or the force constant of the B-N bond, even when a relatively large coupling constant is incorporated between the B-N and the C-N bond stretches. It is probable that the force constant **of** the C-N bond increases on co-ordination to BX,. The present vibrational analysis does not entirely agree with an earlier analysis for WXY,.

IT is the purpose of this Paper to examine the common assumption $\frac{1}{1}$ that frequency shifts in the Raman or infrared spectra of ligand and acceptor on co-ordination are indicative of the strength (measured by the force constant) of the donor-acceptor bond. As an illustration of the behaviour to be expected in co-ordination compounds we have chosen the molecule $MeCN, BX_3$ because (a) the "CN" stretching frequencies of the fluoride, chloride, and bromide are known,² (b) the molecular symmetry of the fluoride is known³ (C_{3g}) , and (c) the results obtained in this system are likely to be of direct interest in other systems. The vibrational analysis of this molecule, on which the following discussion is based, is given in the Appendix. In Table 1 we record the *al* modes most nearly approximating to the C-N and B-N bond stretches. The contributions of the relevant force constants to the total potential energy of the chosen vibrations are also given. We have allowed the C-N force constant to assume the values 15, 10, and 5 millidynes \AA^{-1} in order that the bond may be representative of triple, double, and single bonding between C and N. View Online (View Online 1992)

2292

229

> In the case of a force constant of 15 millidynes **A,** that is to say with chemically significant acetonitrile, the C-N frequency is remarkably insensitive to variations of the halogen attached to the boron, and to the B-N force constant. The frequency shift from free MeCN (calculated) is about $+25$ cm.⁻¹ whereas that observed experimentally ² is in the range $+70-110$ cm⁻¹. This increase in frequency on co-ordination is rare, and according to our simple (simple valence-force field) calculations, is not solely a kinematic effect due to coupling in the G-matrix. If the off-diagonal terms in the potential-energy matrix which coupling in the G-matrix. It the on-diagonal terms in the potential-energy matrix which relate to coupling of the B-N stretch with the C-N stretch $(F_{23} = F_{32} = + fr_4r_5)$ are given the value -10^5 dynes cm.⁻¹ the calculated " C-N frequency " is 2192 cm.⁻¹, giving a shift of about $+90$ cm.⁻¹ from that in free acetonitrile (calculated), which is of the order of magnitude of the shift observed in practice. It is, however, difficult to justify this high

¹ See, e.g., Lappert, J., 1962, 542.
² Gerrard, Lappert, Pyszora, and Wallis, J., 1960, 2182; the value for the C-N stretching frequency
of MeCN, BCl₃ does not agree with that given by Coerver and Curran, J. Amer. C **3522. ^a**Hoard, Owen, Buzzell, and Salmon, *Acta Cryst.,* **1960, 4, 405.**

[**19641** *A Normal Co-ordinate Analysis of* MeCN,BX,, *etc.* **2293**

TABLE 1.

Calculations of " $B-N$ " and " $C-N$ " stretching frequencies for MeCN, BX_s , and including main contributors to the potential-energy function for the vibrations selected.

* Refers to force constants for C-N and B-N (or Ga-N) bonds respectively (in millidynes **A).**

TABLE 2.

Calculated "C-N stretching frequencies " for MeCN, BX₃, using a C-N, B-N stretch-stretch interaction term of -0.5×10^5 dynes cm.⁻¹.

The following force constants were used:

with stretching constants in mdyne \AA ⁻¹, deformational in mdynes \AA radian⁻².

B-X bond lengths: $BF_3 1.33$, $BCl_3 1.79$, $BBr_3 1.91$ Å.

All angles were assumed to be tetrahedral or 180".

For $GaCl₃$ the same force constants as those taken for $BCl₃$ were assumed.

negative value, and we consider that the force constant of the C-N bond increases to some extent on co-ordination. In Table **2** we record " C-N stretching frequencies" for MeCN, BX₃, on the assumption of a coupling constant of -0.5×10^5 dynes cm.⁻¹, and it is evident that this frequency is still insensitive to the force constant of the B-N bond.

The slight increase in the force constant of the C-N bond on co-ordination of acetonitrile is surprising and in the reverse direction to shifts normally found with donor molecules involving $\geq C=0$ or $\geq P=0$, for example. The apparent lowering of the force constant of the carbonyl group in \geq C=O on co-ordination through the oxygen is usually interpreted in terms of electron flow from the multiple bond to the co-ordinate link, and it is difficult to see initially why such an explanation should not apply equally well to 2294 Beattie and Gilson:
it is difficult to see initially why such an explanation should not apply equally well to
acetonitrile. However, in adducts such as $\text{C}=0 \longrightarrow AX_n$, where the COA angle is approximately tetrahedral, X will be close to the electrons forming the C-0 link and close to the carbon, so that repulsions from X may effectively weaken the C-0 link. The CNB angle in $MeCN, BX_a$ is 180° , and it appears that the effect of X may be to repel electrons from the nitrogen into the C-N link, possibly causing an increased force constant. Similarly, the difference of 40 cm.⁻¹ between the observed "C-N stretching frequencies " in $MeCN, BF₃$ and $MeCN, BBr₃$ could be accounted for in terms of the effect of the size of the halogen on the electron distribution within the molecule.

The second point that arises from the analysis is the expected one, namely, that it becomes progressively more difficult to talk of " a C-N stretching frequency " as the force constant is lowered from 15 through **10** to 5. Thus in MeCN,BX,, with the C-N force constant at 5, the '' C-N stretching frequency " is about **40%** C-C stretch. Similar difficulties occur in assignment of a B-N stretch. We may conclude by noting that for acetonitrile the C-N stretching frequency is remarkably insensitive to the residue to which it is attached, and even to the strength of the bond by which it is attached to this residue. Similar conclusions will apply to adducts with double bonds. With a single bond the frequency is becoming more sensitive but less capable of exact description. A study of the variation of a fundamental frequency of a ligand in a series of co-ordination compounds will be meaningful in terms of donor strength where a closely related series of compounds are being examined. That is where the nature of the bonding and the size and stereochemistry of the adduct are sensibly constant. Such examples occur in the first, second, or third transition series, and studies here have been rewarding.⁴ It is doubtful if such examination will be found to be of general value for halides of the non-transition elements where, for example, $SbCl_3, Me_3PO$ and $SbCl_5,Me_3PO$ differ greatly in their heat of formation but have similar shifts for the P-0 stretching frequency from that in pure trimethylphosphine oxide.5 2294 Beadlie and Gilson: We
would be accordingly why such an explanation should not apply equally well to according
the interpretict in Fource, in adduces such as \geq
CO $-$ AX_n, where the CO angle is approximately te

APPENDIX

Normal Co-ordinate Analysis of MeCN,BX, *for General Angles; Symmetry C3, (and including* WXY₃).--Our choice of internal co-ordinates is shown in the Figure $\lbrack \gamma \rangle$ and ε lying in the plane through X(1)]. With cartesian co-ordinates, the representation of the molecule after removal

of translational and rotational degrees of freedom is $\Gamma_{\text{mol}} = 5a_1 + 5e$, whereas, with internal co-ordinates we find $\Gamma_{\text{mol}} = 6a_1 + 5e$, so that there will be one redundant co-ordinate of the a_1 type.

Our orthonormal symmetry co-ordinates were :

$$
a_1 S_1 = \Delta r_6; S_2 = \Delta r_6; S_3 = \Delta r_4; S_4 = (1/\sqrt{3})(\Delta r_1 + \Delta r_2 + \Delta r_3);
$$

\n
$$
S_5 = [1/\sqrt{3(1 + n^2)}][\Delta \beta_1 + \Delta \beta_2 + \Delta \beta_3 + n(\Delta \alpha_{12} + \Delta \alpha_{23} + \Delta \alpha_{13})]
$$

⁴See, *e.g.,* Fronaeus and Larsson, *Acta Chem. Scand.,* **1962, 16, 1433;** Cotton and Zingalese, *J. Amer. Chem. Soc.,* **1961, 83, 351** ; Sacconi and Sabatini, *Nature,* **1960, 186, 549.**

⁵Zackrisson and Alden, *Acta Chem. Scand.,* **1960, 14, 994.**

[**19641** *A Normal Co-ordinate Analysis of* MeCN,BX,, *etc.* **2295**

1964] A Normal Co-ordinate Analysis of MeCN, BX₃, etc. 2295
\n
$$
S_4^* = [1/\sqrt{3}(1+n^3)][\Delta x_{12} + \Delta x_{23} + \Delta x_{13} - n(\Delta\beta_1 + \Delta\beta_2 + \Delta\beta_3)].
$$
\n
$$
c_1^* S_4 = \Delta y; S_2 = \Delta \varepsilon; S_4 = (2/\sqrt{6})(\Delta r_1 - \frac{1}{2}(\Delta r_2 + \Delta r_3));
$$
\n
$$
S_5 = [2/\sqrt{6}](\Delta x_{13} - \frac{1}{2}(\Delta r_3 + \Delta r_3)); S_{10} = -2/\sqrt{6}(\Delta r_3 + \Delta r_3));
$$
\nBy use of standard techniques the G-matrix elements are found to be:
\na₁ G₁₁ = $\mu_{Mx} + \mu_{c}$; G₁₂ = $-\mu_{c}$; G₁₃ = 0; G₁₄ = 0; G₁₅ = 0; G₁₇ = μ_{c} + μ_{N} ; G₁₃ = $-\mu_{S}$; G₁₄ = 0; G₁₅ = 0; G₁₆ = 0; G₁₇ = μ_{c} + μ_{N} ; G₁₅ = $(\Delta x/(\Delta + n^2)r_1)$ sin β μ_{11} ; G₁₆ = 0; G₁₇ = $(\Delta x/(\Delta + n^2)r_1)$ sin β μ_{11} ; G₁₈ = 0; G₁₉ = $\mu_{N} + \mu_{S}$; G₁₉ = 0; G₁₀ = $(\Delta x/2)^2$, $\mu_{11} + n^2/r_1$ sin β μ_{11} ; G₁₉ = 0;
\nb₁₀ G₁₀ = $(\Delta x/(\Delta + n^2)r_1)^{1/2}[\Delta(x + 1/r_4)^2 + \mu$

The F-matrix elements for simple valence-force field may be written by the appropriate matrix multiplication as :

$$
a_1 \quad F_{11} = f_{r6}; \quad F_{22} = f_{r5}; \quad F_{33} = f_{r4}; \quad F_{44} = f_{r1}; \quad F_{55} = [1/(1+n^2)](f_{\alpha} + n^2f_{\beta}).
$$

\n $e \quad F_{66} = f_{\gamma}; \quad F_{77} = f_{\epsilon}; \quad F_{88} = f_{r1}; \quad F_{99} = f_{\alpha}; \quad F_{10,10} = f_{\beta}.$

A glance at the analysis by Ziomek and Piotrowski 6 will indicate that our G-terms involving S_8 , S_9 , and S_{10} should be identical with their G-terms involving S_{1a} , S_{2a} , and S_{3a} . Aside from a number **of** misprints in their Paper, this is essentially true, when their expressions are reduced by means of the trigonometrical relationship $2 \cos \alpha = 3 \cos^2 \beta - 1$. However, for the a_1 modes the terms in our analysis involving S_3 , S_4 , and S_5 should also be similar to theirs except for the inclusion (appropriately) of the factor *n* allowing for non-tetrahedral angles. This is by no means always true. Their expressions in many cases can be considerably reduced, but in the case of their G_{33} term there is a factor involving μ_N (μ_X in their terminology). This is clearly impossible from group theoretical considerations. By use of the terms involving S_3 , S_4 , S_5 , S_8 , S_9 , and S_{10} in the G-matrix our analysis can be directly applied to WXY₃ with general angles.

We thank Dr. G. W. Chantry for helpful discussion, Messrs. Melrose and Sleeman for programming the University of London Mercury computer, and Messrs. Albright and Wilson Ltd. and Messrs. Proctor and Gamble Ltd. for financial assistance.

DEPARTMENT OF CHEMISTRY,

KING'S COLLEGE, STRAND, LONDON W.C.2. *[Received, Augzrst 2nd,* **1963.1**

* **Redundant co-ordinate.**

 \uparrow The additional co-ordinates γ^1 and ε^1 are necessary to describe the second symmetry co-ordinates **associated with** *S,* **and S,.**

Ziomek and Piotrowski, J. *Chem. Phys.,* **1961, 34, 1087.**